Vistas de página en total

sábado, 26 de febrero de 2011

Movimiento acelerado en mecánica cuántica

En 1975, Stephen Hawking conjeturó que cerca del horizonte de eventos de un agujero negro debía aparecer una producción de partículas cuyo espectro de energías correspondería con la de un cuerpo negro cuya temperatura fuera inversamente proporcional a la masa del agujero.

 En un análisis de observadores acelerados, Paul Davies probó que el mismo argumento de Hawking era aplicable a estos observadores (observadores de Rindler).[2]

En 1976, Bill Unruh basándose en los trabajos de Hawking y Davies, predijo que un observador uniformemente acelerado observaría radiación de tipo Hawking donde un observador inercial no observaría nada. En otras palabras el efecto Unruh afirma que el vacío es percibido como más caliente por un observador acelerado.[3] La temperatura efectiva observada es proporcional a la aceleración y viene dada por:
kT = \frac{\hbar a}{2\pi c}
Donde:
k\,, constante de Boltzmann.
\hbar, constante de Planck racionalizada.
c\,, velocidad de la luz.
T\,, temperatura absoluta del vacío, medida por el observador acelerado.
a\,, aceleración del observador uniformemente acelerado.
De hecho el estado cuántico que percibe el observador acelerado es un estado de equilibrio térmico diferente del que percibe un observador inercial. Ese hecho hace de la aceleración una propiedad absoluta: un observador acelerado moviéndose en el espacio abierto puede medir su aceleración midiendo la temperatura del fondo térmico que le rodea.

 Esto es similar al caso relativista clásico, en donde un observador acelerado que observa una carga eléctrica en reposo respecto a él puede medir la radiación emitida por esta carga y calcular su propia aceleración absoluta.

1 comentario: